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Abstract

In this lecture, we review the results of Appendix E from the seminal paper by
Belavin, Polyakov, and Zamolodchikov on the critical scaling exponents of the 2D
Ising model by studying the conformal field theory of a free massless fermion system.

1 Review of 2D CFT Basics

Recall that in the complex plane, we have that the conformal transformations are
precisely holomorphic functions z — w(z),z — w(Z). In a local neighborhood, we have
a taylor series expansion in terms of the generators:

I, = —2"t19,,1, = —z"T19; (1)
with relations
[lm7 ln] = (m - n)Cm—l—n (2)
this is the Witt Algebra.

Definition 1.1 (Stress Tensor). For an action S, we define the stress-energy tensor
as:
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Tracelessness gives that we can diagonalize T just as
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And T'(z) :=T..(2)
Writing

Ly, dz .4
T(z) = Zn: npz = Ln= j{ 27 T(2) (5)
gives element L, that form a central extension of the Witt algebra known as the
Virasoro algebra.

[Lon, L] = (m — 1) Lo + ~— (m® = m) 80 (6)
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This parameter c is called the central charge.



2 2D Ising Model and Majorana Fermions

We characterize the classical 2D ising model by a square lattice, holding at each vertex
i a spin o; that is either +1/2 or —1/2. This model is exactly soluble by reduction to
a so-called 1-D quantum ising model, and then using the Jordan-Wigner transform to
write it as a free-fermion on the line.

Conformal field theory is a very powerful tool in studying such statistical models at
critical temperature, and its use in working with the 2D ising model goes back to the
early 70s. We wish to use a different approach to motivate the free Majorana fermion
on the complex plane, arising from the 2D ising model.
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In addition to the spin o (referred to commonly as the order parameter), we can
consider a “Fourier transform” of this model, and associate to each point in the dual
lattice (i.e. the lattice of squares in between the vertices, connected across edges).

For a given spin-distrubution ¢ on the sites, there is a corresponding disorder
parameter, u, on the dual lattice. This naming scheme comes from a deep property
of the Ising model known as Kramers-Wannier duality, that the statistics of o at
low/high temperature are equivalent to the statistics of u at a corresponding high/low
temperature, respectively. That is, at low temperatures where the spins align and o is
“ordered”, we get that p is disordered, but at high temperatures, the disorder of the
spins gives order in the corresponding p statistics. This idea is closely related to the
Heisenberg principle, of how a sharply peaked distribution gives rise to a frequency
distribution of very large support and vice/versa.

The 2D Ising model, in the continuous limit, is then equivalent to the theory of free
Majorana fermions, with Lagrangian

1 0- 1-0 -

L= St + St + miy (7)
with m proportional to T — T,.. Note that because this fermions has no charge, the
field is real valued: 1* = 4, so v is not the same as the conjugate of v, but is rather
a second, independent component.

We care about at the critical temperature T' = T, where the mass becomes zero
and the equations of motion with m = 0 give:

0 0 -
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Namely that ¢ is holomorphic so ¢ = 1)(z) and 3 = (%) is anti-holomorphic.
Then the stress-energy tensor can be obtained directly

T(2) = () ()
e 0
T(2) = 0 (2) b (2)

From T'(z), we obtain a Virasoro algebra with central charge 1/2. Moreover, we
can directly invert the kinetic part of the Lagrangian to obtain equations for the pro-

pogators:
1
(=) = ——
o 1 (10)
(BE@) =
We know that two-point functions of a primary field with scaling dimensions (A, A)
behave as ]
z)p(w)) x — 11
(B9} % (1)
and in fact 1), 1) are primary with scaling dimensions
(Ay, Ay) = (1/2,0)
_ (12)
So in fact the field transforms as
e\ /2
v - (5) v
z
(13)
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Proposition 2.1. The set of fields (1,1,1,¢1)) forms a complete set in the sense
that these fields, together with their descendants, are closed under operator product
exTpPansions.

Their corresponding scaling dimensions are

— (0,0), ¥ — (1/2,0), ¥ — (0,1/2), ) — (1/2,1/2) (14)

3 Differential Equations for Primary Correla-
tors

The operator product expansion of T" with ¢ (z) gives

2
TN = |y ey + ol | ¥ (15)

Further recall the Ward Identity applied to (T'X), where X = ¢(w1) ... ¢(wy,) is
a product of primary operators.

rx) =% ( L+ A2> (X) + reg. (16)
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where reg. stands for higher-order holomorphic terms.
Now the same equation holds for the product ¥ (2)¢(w1) ... ¢(wy) of primary oper-
ators, giving for (T (z)o(wy) ... ¢(wy)) the result:

1 i - 1 A
0+ —2—— + (awﬁ’) X) + reg. 17
[c—z (=27 Z} (g )| e )
On the other hand from OPE of T, we get that this is equal to
11 1 3 9
[2(@z)2+(z@+462z] (X). (18)

Together, these give a differential equation for (X):
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We can use this, now, as a powerful tool in finding correlation functions.

4 Ising Correlators of ¢ and u

The original lattice order parameter o, representing the spin at site 4, in the continuum
limit becomes an operator o(z, z), corresponding to the spin density at a point. Sim-
ilarly p becomes a continuous variable p(z,Z). We expect A, = A, because of Ising
duality.

Moreover, from the statistical model, we know that the correlator

(P(z)o(&) ... o(fan—1)u(&an) - - p(€am)) (20)

is a multi-valued function in z, picking up a — sign if z circles a &;. This corresponds
to an orientation reversal. For this reason, we get square-root behaviour in the OPE:

Y()o(z,2) = (€ = 2)7*(u(z 2) + reg.)
Y(©)u(z,2) = (€ —2)7*(0(2,2) + reg.)

In fact o, u are primary. With these OPEs and the differential equation from before
for (¢ X), we get

(21)

Ag=A,=1/16=A7A, =47, (22)
This moreover gives that 2-point functions (oo) and (uu) scale as
1
(z — w)i/*’

which is exactly the scaling behaviour of the Ising correlators at critical temperature.
Now, as before, using the same trick of expanding (T'X) by Ward identity, we
consider

(X) =(0(&)...0(&n)mng) - - 1)) (23)

Together with using the fact that o, u are in fact degenerate operators, we get one
differential equation for each of the coordinates &;:
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We shall now apply this to calculate 4-pt functions.
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5 4-point Correlators

For the correlator (o(z1)o(z2)0(z3)0(z4)), we have a full description in terms of the
cross-ratios x, T that the correlation function should look like:

Y (z,x)

(213224Z13724)

8 (25)

We obtain 2 ODEs, on for each of z,z. Together they combine to give, in terms of x:

92 1 9 1

l—2)—+(=—2)— + — T)= 2
P 2) (5 — @)+ 2wl 7) =0 (26)
where
w(z, z) = [z2(1 — 2)(1 — )4 Y (2, 2) (27)
is Y, rescaled appropriately. Through change of variables, z = sin?(0), Z = sin?(f) we
get an expression for u as
u(6,0) =u11 cos(0/2) cos(0/2) + w2 cos(6/2) sin(6/2) (28)

Uus1 sin(0/2) cos(6/2) + uggsin(6/2) sin(6/2)

Note that unlike something like ()oo0o), the four-point function (cooo) is well-defined
and not double-valued. This condition immediately requires ug; = w12 = 0. Moreover
symmetry under 0 <> —0 gives u11 = u9s, and finally the normalization convention for

the two-point function

(02, )0 (w, B)) = (2_10)1/4 (29)

gives u1; = uge = 1 so that all together we get a 4-point function

cos(0/2) cos(6/2) + sin(6/2) sin(6/2)
wa(1—2)(1 — 2)1/3

(30)

(cooo) =

and in fact this can easily be expressed in terms of the Virasoro conformal blocks
F(A1,Ag, ) as

F(1/16,0,2)F(1/16,0,z) + F(1/16,1/2,2)F(1/16,1/2, %) (31)

And we can recognize that the first product of blocks corresponds to the identity opera-
tor (with scaling dimensions (0, 0)) appearing in the OPE, while the second corresponds
to the energy density e (scaling dimension (1/2,1/2)) appearing.

Similarly, for (cuou) we get

F(1/16,0,2)F(1/16,1/2,%) + F(1/16,1/2,2)F(1/16,0, ) (32)

Corresponding to the operators 1, ¢ appearing the OPE of oy. Indeed, this gives us
that
op =287 V8((2) + reg.) + 2823 ((2) + reg.) (33)

Which confirms the idea of 1,1 being regularized versions of the classical Ising quan-
tities ou.



